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ABSTRACT

The interactions between longitudinal vortices and accompanying waves considered here

are strongly nonlinear, in the sense that the mean-flow profile throughout the boundary

layer is completely altered from its original undisturbed state. Nonlinear interactions be-

tween vortex flow and Tollmien-Schlichting waves are addressed first, and some analytical

and computational properties are described. These include the possibility in the spatial-

development case of a finite-distance break-up, inducing a singularity in the displacement

thickness. Second, vortex/Rayleigh-wave nonlinear interactions are considered for the com-

pressible boundary-layer, along with certain special cases of interest and some possible so-

lution properties. Both types, vortex/Tollmien-Schlichting and vortex/Rayleigh, are short-

scale/long-scale interactions and they have potential applications to many flows at high

Reynolds numbers. Their strongly nonlinear nature is believed to make them very relevant

to fully fledged transition to turbulence.
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Contract No. NASI-18605 while the authors were in residenceat the Institutefor Computer Applications

inScienceand Engineering (ICASE), NASA Langley Research Center,Hampton, VA 23665.





1. INTRODUCTION

The majority of any transition process from laminar to turbulent flow poses a consider-

able theoretical challenge since fully fledged transition is a strongly nonlinear process, i.e.,

it completely alters the mean-flow profile from its original laminar state. Much interest has

therefore arisen recently in nonlinear three-dimensional (3D) interactions between longitu-

dinal vortices and accompanying nonlinear waves, because of the strongly nonlinear nature

of vortex/wave interactions and hence their likelihood of increased relevance to fully fledged

transition, e.g., as observed experimentally by Klebanoff et al. (1962), Hama and Nutant

(1963), Nishioka et al. (1981), Nishioka and Asai (1984, 1985), Kachanov and Levchenko

(1984), Williams ¢t al. (1984, 1987), Thomas (1987) and simulated computationally by

Wray and Hussaini (1984), Kleiser and Schumann (1984), Gilbert and Kleiser (1986, 1988),

Zang and Hussaini (1986, 1987), Fasel et al. (1987), Spalart and Yang (1987), Laurien and

Kleiser (1989), Zang and Krlst (1989). In this work vortex/wave interactions are considered

theoretically in the context of boundary-layer transition.

There appear to be three main theories developed so far, of a truly nonlinear nature,

in the case of fiat-surface boundary layers: first, for nonlinear Tollmien-Schlichting (TS)

interactions via triple-deck-like theory (e.g., Smith (1979, 1985, 1988, 1989), Hall and Smith

(1984)); second, for nonlinear Euler interactions (Smith and Burggraf (1985), Smith and

Stewart (1987), Smith, Doorly, and Rothmayer (1989)); and, third, for nonlinear vortex/wave

interactions (Hall and Smith (1987, 1988, 1989), Bennett, Hall, and Smith (1988), Smith and

Walton (1988, 1989), Bassom and Hall (1989)). The third, which is our concern here, can be

regarded as stemming from the first, as Smith and Walton (1988, 1989) show. Alternatively,

in the presence of curvature, longitudinal vortices are able to exist without any forcing from

a wave system (Hall (1982), Han and Lakin (1988), Hall and Seddougui (1989)). Here it is

found that strongly nonlinear vortex flows completely restructure the boundary layer in a

manner which renders it neutrally stable to travelling waves; the latter result is closely related

to the ideas of Malkus (1950) who proposed a 'marginal theory of turbulence.' All the above

theories, for high Reynolds numbers, are known to be inter-connected in that triple-deck

interactions can lead on to Euler-stage flow (see Smith and Burggraf) and to vortex/wave

interactions (see Hall and Smith (1987) and Smith and Walton (1988, 1989)), and further

likely connections are found to arise in this study. All are particularly attractive because they

can produce substantial alterations of the mean-flow profile or shear in the boundary layer, in

contrast with linear instability theory and weakly nonlinear theory (e.g., Stuart-Watson-like,

Benney-Lin, resonant triads, and associated near-neutral analyses) where some interesting

low-amplitude phenomena can be predicted but nevertheless the mean-flow quantities are

little changed. Again, the truly nonlinear interactions above are based on rational arguments



as distinct from the interesting but ad hoc approachesof certain other theories,while the

largenessof the Reynoldsnumber taken throughout seemsnot unlikely to be appropriate
to the experimental range of greatest concern. The question of which strongly nonlinear

interaction appliesin any particular experimentalconfiguration dependson the amphtudes
and spectra of the input, at an initial time and/or position. In particular, the present,

vortex/wave, interactions apply for wavesof small amplitude which neverthelessare ableto
alter the mean-flowquantitiesbecauseof the relatively short wavelength,comparedwith the

relatively large developmentlength of the meanflow, thus inducing full nonlinearity.

The aim in this work is to describedistinct casesof vortex/waveinteraction in boundary-

layer flows, aswell as someinteresting and useful sub-cases,of which there are many. We
summarize the derivations from Undefl_,_ng fi0w structures, and the governing equations, for

a number of vortex/wave interactions, to focus attention on the wide range of possibilities

and applications, and some solution properties are also given in the form of linear, secondary

instability, weakly nonlinear, fully nonlinear similarity-type, and nonlinear breakdown phe-

nomena, along with computational studies, as a start. A main task here however is felt to

be to put the typical controlling equations of vortex/wave interaction on record, as they are

believed to be of much significance and of broad application (see below).

The scales and amplitudes of the vortex flows tend to be relatively simple on the whole

and can be inferred from the early Taylor-vortex calculations by say Davey (1962), whereas

the waves' scales and amplitudes are usually more involved. The origins of these scales

and of the corresponding flow structures are to be found in the flow properties described

by Hall and Smith (1984, 1987, 1988, 1989), Bennett, Hall, and Smith (1988), Smith and

Walton (1988, 1989), for Iower-amplitude interactions. The two major kinds of nonlinear

vortex/wave interaction that emerge, an d are addressed below, concern what are effectively

TS waves and Rayleigh waves.

Vortex/TS-wave interactions are discussed in Section 2 (see also Figure 1), where the

scales, flow structure and controlling equations are presented, and in Section 3 where certain

solution properties are considered. This is mainly for the incompressible boundary layer

although the corresponding compressible version follows th e same pattern, cf. Smith (1987),

Blackaby (1990), Smith and Walton (1988, 1989). Vortex/Rayleigh-wave interactions (again

see Figure 1) are then described in Sections 4 and 5 for compressible boundary layers, given

the earlier groundwork, and given the Susceptibility of such boundary layers to Rayleigh

waves, with the incompressible and other limiting regimes then being obtainable as special

cases (see Section 5 and Appendix B). A number of interesting nonlinear flow properties

seem to be suggested. These include the possibilities that the vortex/TS interaction can

provide a lead into vortex/ltayleigh interaction, even in the incompressible regime, that ei-



ther interaction can produceeventually an Euler-stageflow, within a finite distancein the

spatial problem or within a finite time for the temporal case,that many wavescanbe acti-

vated together, and that successiveshorter-scalevortex-waveinteractions can be provoked,

producing a cascadeof scales.In addition, asthe whole boundary layer is changedsubstan-
tially in anyof thesenonlinear interactions, there is potential relevanceto by-passtransition

throughout aswell as to moregradual transitions triggered initially by linear disturbances.

Further commentsarepresentedin Section6.
The nonlinear vortex/wave interactions studied here also hold for many other flows in

principle and havenumerousapplications. Examplesare channelflows (seealso Bennett et

al. (1988)), pipe flows (see also Walton (1990)), wakes, plane Couette flow, water motions,

e.g., Langmuir circulations, free shear layers, separations, flow over surface roughnesses,

vortex breakdown, and possibly other rotating fluid flows. The vortex/wave interaction

seems to apply in fact to any flow that admits relatively short-scale waves. Among the

interactions, those of Section 4 for nonlinear Rayleigh-like waves would appear to have the

broadest application.

In the following, the large Reynolds number Re is the global one, based on the airfoil

chord and free-stream speed in the aerodynamic context, as are the corresponding nondimen-

sional coordinates z, y, z and velocities u, v, w, streamwise, normal and spanwise respectively

for flat-surface flow, and the time t. Similarly, the nondimensional density, viscosity, tem-

perature and pressure are p,#, T,p (with freestream value poo), while Mo_, a, C denote in

turn the free-stream Mach number, the Prandtl number, and the constant in the Chapman

viscosity law which is assumed for definiteness. The characteristic boundary-layer thickness

is then 0(Re-½) in terms of y[= Re-½y], and the standard TS scalings, i.e., 3D triple-deck
5 3

with y for instance scaled as _, ½, _ powers of Re -1 and z, z as _ powers, apply in the setting

of Section 2, whereas standard Rayleigh scales apply for Section 4. Throughout, the motions

being considered are 3D and unsteady.

2. NONLINEAR VORTEX/TOLLMIEN-SCHLICHTING INTERACTIONS

The vortex/TS nonlinear interactions that we address first here are larger-scale ones, in

which the mean-flow profile of the entire 0(Re-½) boundary layer is altered from its original

.laminar form. We start with the wide vortex. The scales involved may be derived from an

order-of-magnitude reasoning as follows. The small TS waves of typical pressure amplitude II

say, to be determined, have the triple-deck structure, so that their streamwise and spanwise

velocity perturbations are of order Re-_h within the lower deck near the surface, where

II = Re-ih and h is assumed to be small. The powers of the Reynolds number present here

are those characteristic of the triple-deck, and hence of 2D and 3D TS waves, as set out in

3



numerouspreviousworks on TS waves alone. In particular the z scale is comparable with

Re-]. Forcing of the near-surface vortex flow then occurs at the amplitude-squared level,

including a vortex spanwise velocity of order Re-_ h 2. This velocity grows logarithmically at

the edge of the lower-deck sublayer, as described by Hail and Smith (1988), and so it is little

different in the main part of the boundary layer, the main deck. There the typical vortex

dynamics is controlled by the convective-viscous balance acting on the 0(1) scale in x and

hence, since the z-scale is of order Re-], the representative w in the vortex has size 0(P_e-]),

given that the streamwise velocity is of order unity. So nonlinear interaction arises when this

size of spanwise velocity is comparable with that forced by the presence of the TS waves, i.e.,
i 2 1

with the order Re-Zh , from above. The critical size is therefore h -_ Re-Z, corresponding

to the pressure amplitude H = Re-] and =confirming the relative smailness of the TS waves,

which contrasts with their substantial impact on the main boundary-layer motion. The same

estimate of size results from direct extensions of our previous work on related vortex-wave

interactions (see references). The back-effect, of the induced longitudinal vortex motion on

the waves themselves, is felt through the streamwise skin friction which helps to control the

waves' response within the sublayer.

The expansions of the flow solutions in the lower, main, and upper decks may then be

set down, accounting for the extra logarithmic terms necessary in view of the logarithmic

sublayer behavior of the vortex spanwise velocity mentioned above. The vortex velocity has

the form

[u, v, w] = 0[1, l_e-½, Re-_]

across the majority of the boundary layer, while the wave velocity and pressure are

[u,v,w,p] = 0[ae-'L:], _ = £nae ,

^

O[Re- ¼, Re-I, Re-i, Re-ilL,

0[Re- ' ' 1 , ^*, Re-_, Re-*, Re-*]/2,

in the upper, main, and lower decks respectively. See Figure 1.

equations for the vortex/wave interaction in this context are therefore:

(vortex) _x + e_ + _z = O,

_, +_ _. +_ _+ w uz = -F(x) +_,

_,+_x+_+wwz 0+_,

subject to =_

= _ = 0, _ _(Ipl _ + _-_lPzl _) at 0,
A-

(zl_)

(2.1b)

(2.1_)

(Z_d)

The resulting governing

(2.2a)

(2._.b)

(Z2c)

(Z2d)
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with

-_ u_(x),% _ 0 as y -_ co;

_z
(wave) Pzz - 7-_-Pz - _P = GA,

-X = % at y = O. (2.3b)

Here the scaled vortex velocity (_,_,_) and skin friction "_, and the wave pressure P and

displacement -A, are all unknown, as is the (real) wavenumber a(x) if the spatial devel-

opment is under consideration. Also, _'(x) = -u_C_(x) is the prescribed external pressure

gradient, if any, and the spanwise scale has z = Re-]Z. The wave pressure-displacement

(P-A) law required to complete the system is given by solving

+ - =o, (2.4a)

with/3 --. 0 in the farfield, (2.4b)

/5 _ P, /5_ _ -a2A, as _ _ 0+, (2.4c)

for the upper-deck response in the potential flow just outside the boundary layer, in the

present incompressible regime; and the coefficients appearing in (2.3a) are defined by

3 _oAi'(_o) ( K_o _ . -__.,5v=_+ _ l+Ai,(_0)],_=(za,_),A_(_0)/g,

.1 _ 2 /oo_o = -z_f_/(a_)'_, K = Ai(q)dq, (2.5a- d)J¢0

where Ai is the Airy function and, for the spatial case again, f_ (real) is the constant imposed

frequency.

The wave-forclng of the vortex motion appears in the effective spanwise surface velocity

in (2.2d), an amplitude-squared effect anticipated in the first paragraph of this section. The

vortex-forcing of the wave, on the other hand, is through the skin-friction factor X in the TS

pressure equation (2.3a). In the pure spatial-development problem the terms _t, _t in (2.2b,c)

are to be omitted, and, in the background, multiple scaling 0_ ---* Re]Ox + O_ operates, with

the short-scale wave being dependent on X through the form P(z, Z) exp(iaX-if_t) in effect

while the long-scale vortex flow is independent of X [more precisely, iaX should be replaced

by i f adzRe]]. The main alternative of pure temporal development has 0_ identically zero

instead, in (2.2a-c), along with the multi-scaling Ot --_ Re¼0_ + Ot where the fast-scale wave

varies with t" as above, i.e., we have P(t, Z) exp(iaX -if_t) in effect, but the slow-scale vortex

evolution is independent of t, and a is then constant with f_(t) to be determined.

The wide-vortex/TS interaction, then, is governed by the equations (2.2) - (2.4).



The next two types of vortex/wave nonlinear interaction addressedare for the squar____e
vortex, for which the y- and z-scales of the vortex are comparable, of order Re-½. These

types have scales implied to some extent by Bennett and Hall (1987) and by an examination

of the wide-vortex case for condensed [z] scales. First, the square vortex has the scales

[=,v,_] = 0[1,Re-½,P_-]], p = _(_)+ 0(1_e-1), (2.6a)

1

with z = Re-_ and _ of 0(1), and the wave disturbance is now condensed inside the

boundary layer, such that its velocity and pressure fields have

1

(2.6b)

1 1 1

0IRe-i, P_-_, P_-_, Re-_1_1 (2.6c)

in the midst of the boundary layer and in the 0(Re-]) subiayer, in turn. So here the vortex

equations are

_ + Vy + _- = 0, (2.7a)

_t +_v_ +_ vr +_ _z = -p_ +_ _ + v%,,

(2.7b)

(2.7c)

(2.7d)

These are the nonlinear GSrtler-vortex equations in a boundary layer at zero GSrtler number

(Hall (1988)); in the presence of curvature a term proportional to _2 must be inserted in

(2.7c). The boundary conditions appropriate to (2.Ta-d) are

O_z 2

(2.7f)

while the coupled wave-pressure equation is

P'_ -i - .T 2-_ P-_ - a _P = 0. (2.8)

Here _( is the unknown skin friction as defined in (2.3b) and _ is as in (2.5), but now the

interaction relation of (2.4) is replaced by A _ 0 effectively. This new feature is due to the

shortened streamwise and-spanwise length scales associated with the wave, both of which are

now 0(Re-_), thus suppressing the mwsc_d pressure feed-back from outside the boundary

layer. The other new-fea:tures of the present two-tier structure, for the square-vortex case, are

the balance of normal and spanwise diffusion, in (2.Tb-d), and the interpretation of (2.7c,d)

m
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as a streamwise vorticity equation (on elimination of P2 by cross-differentiation). It should

be noted however that (2.8) has no solutions with a real if _- = 0, and even with _- = 0 the

possibility exists that there are no solutions of the full interactive equations in this case.

The other type of nonlinear interaction involving a square vortex has some analogies with

Bennett et al.'s (1989) for channel flow. Here the vortex exhibits scales as in (2.6a) again,

but the wave form is distinct from (2.6b,c) in that the triple-deck structure is reinstated,

such that

[u, v, w,p] = 0(Re-] )t + 0(Re-_)_ (2.9a)

in the upper deck, and so on; in particular

p= (Re-]P0 + Re-]P1)_ +... (2.9b)

1

with P0(x) uniform in _ but P1 depends on x,_. The relative contributions of order Re-T

in the wave form affect both the vortex and the TS response throughout. Thus the vortex

equations are again (2.7a-f) except that the spanwise slip condition in (2.7e) is replaced by

= + c.c.+ at y O,

and the wave-pressure equation becomes now

Pli "i - .T'_ Pri - a2 Po = G Ao

(2.1o)

(2.11)

where A0 = a-lPo. Here again the y- and z-diffusion effects in the vortex motion are

comparable, but the increase in the skin-friction variation across the span, relative to the

wide-vortex case, causes the splitting of the TS wave response as in (2.9b). The solution of

(2.11) for P1 can be written in integral form as in Bennett et al. and substituted into the

slip condition (2.10) in principle. Other scales and forms of splitting are also possible for

this square-vortex type.

We move on now to the fourth type of nonlinear interaction to be considered, that for

a small vortex. This arises as an interesting sub-case of (2.2) - (2.4)'s interaction, with the

characteristic y-scale reduced to 0(A) say, near the surface, where the new parameter A <:< 1.

So we might expect that _ .-_ A, in an 0(A) sublayer, with the x-scale reduced to the order A s

to preserve the convective-viscous balance in (2.2). Hence by continuity _ is large, 0(A-l),

and _ is still larger, 0(A-2), provided the Z-scale remains intact. The nonlinear interplay

between the vortex and the wave also stays intact if the scaled wave pressure P is increased

by an amount A -1, from (2.3), with a remaining 0(1). So here the vortex quantities are

[u,v,w] 0[A,Re-½A -_ Re-]A -2] with y~ A,z~ A s (2.12a)

7



and the TS wave pressure is increased to

p = 0(Re-] A-l), (2:12b)

to within a logarithmic factor. The governing equations for this case, in scaled form, are

(2.2) with _(x) absent and with (2.2e) replaced by

u-y ---+A1 as y ---+co, (2.13)

coupled with (2.3), (2.4) again. Here the constant A1 is the skin-friction factor for the undis-

turbed incident boundary layer. As A tends back towards 0(1) the wide-vortex case of (2.2)

- (2.4) is approached, whereas for A reduced towards 0(Re-}) the small-scale interaction of

Smith and Walton (1988, 1989) is recovered. A number of other small-vortex/wave nonlinear

interactions can be derived in similar vein from the previous ones.

All the vortex/wave interactions described above are fully nonlinear in the sense defined

in Section 1. In general each one needs a computational treatment, marching forward in x

from given starting conditions at x = 0, say, in the Spatial-development_ setting, or forward

in t from initial conditions at t = 0 for the temporal setting. Note however that for either

the temporal or Spatial problem we cannot arbitrarily choose the input vortex velocity field

since the associated Tollmien-Schlichting wave must satisfy an eigenrelation dependent on

the initial shear stress. Some solution properties are presented below.

3. NONLINEAR INTERACTION PROPERTIES

Most of our interest here is in the spatial development for the wide vortex of (2.2)-

(2.4) and for its small-vortex form (2.13). The nonlinear flow properties of the vortex/wave

interactions seem to depend to a large extent on the amplitude and spectra of the input

disturbance upstream.

Certain special cases may be addressed first, as guidelines. Thus if the input comprises

two oblique waves of relatively low amplitude and spanwise wavenumbers +_ Say, then an

analysis for (2.13) for instance can be conducted similar to the analysis in Ha!! and Smith

(1988) (.but corrected for a logarithmic effect, like that in (2.1b), as described in a subse-

quent paper with Professor P. J. Blennerhassett ). Such analysis yields interact!on equations

between the near-neutral waves' amplitudes and the induced v%tex mot!on_ The solutions

of these weakly nonlinear equations in the Hall and Smith (1988) case show that, depending

on f_, either a finite-distance singularity is encountered or a far-downstream asymptote with

exponential growth is attained. In the present context, the former would tend to reinstate

the full vortex/wave system associated with (2.13), whereas the latter would lead on even-

tually to the longer-scale vortex/wave interaction of (2.2) - (2.4). Similarly, if the input

=

qF

lg_
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wave is near-planar then analysis along the lines of Smith and Walton (1988, 1989) can be

applied initially. For relatively small amplitudes, the solution properties found with weak

nonlinearity present again tend to reactivate (2.2) - (2.4) or (2.13) in full. For non-small

amplitudes, pronounced secondary instability to 3D modes is found, among other things,

with the near-planar input, the 3D components growing initially in a form analogous to the

exponential of an exponential of distance.

The above cases could be used to provide upstream starting conditions for the full

vortex/wave-interaction systems (2.2) - (2.4), (2.13), e.g., at finite or large negative z re-

spectively. The ultimate downstream behavior on the other hand for the small-vortex case

is considered in Smith and Walton (1988, 1989), where three main possibilities are raised.

One is that the full interaction continues to downstream infinity and acquires a nonlinear
_. 1 l 2

similarity form (with the scaled _, P, _, _ behaving as scaled xi, z-*, z_, z-_ in turn), prop-

erties of which are given in the last-named paper and by Walton (1990). In that event,

the small-vortex/wave interaction acts as a precursor to the wide-vortex form. The second

possibility concerns a 3D-strong-attachment singularity occurring in the vortex and wave

solutions at finite z downstream. This typically takes the form, with n > ½,

(3.1a)

on approach to a surface attachment line x = z,4(Z)-, say. Here _ is typically 0(1). Near

a valley plane Z = Z1 for instance, where @ ~ (Z- Z1)@(_) vanishes, the cross-stream

balances

=

dominate, yielding

= _[exp(--_) --I],zb= _2 exp(--_-_), (3.1b)

where _ is a positive constant. Hence, the wave-pressure amplitude P is proportional to

(zA - m)-n and alsobecomes singularat x = z.4.The third possibilityin Smith and Walton

isagain a finite-distancesingularitybut of a 3D-separation kind, taking place in the vortex

motion, probably at a peak plane Z = Z2 say. There

~ (ms - x) -r, _ ~ (xs - x)q-l(Z - Z2), (3.2c, d)

with N = 1" + q - 1 positive and q > 1 - 2F, so that the local response is predominantly

inviscid in a region which thickens in singular fashion as x ---> ms-. The solution has the

form

dU/dY = A_U ''_ + A2U'_',m_ = 1 + N/q, m2 = rnl- 1/q (3.2e)



where AI,A2 are constants. For example, ifr = ½,q- i, then N----½ and U takes a (tan)2

form. The description(3.Za-e)holds for a finiterange of Y, with U becoming singular at

Y = YI say in such a way that a thinner regionof extent 0(1),in terms of y" (XB --x)-NYI,

isinduced to smooth out the velocityprofiles.In this0(1) region,the velocitiesu,w are 0(i)

and theirprofilesare arbitrary,i.e.,dependent on the flow history,apart from the matching

with (3.2e)at the lower extremes and (2.13)for example inthe upper extremes. In particular

the effectiveboundary-layer displacement

s"~ (xs- (3.2/)

becomes large in this separation singularity, connected perhaps with the formation of a

lambda (loop) vortex in practice.

The proposed attachment singularity (3.1) and separation one (3.2) apply equally well to

the wide-vortex case in principle. The similarity form mentioned previously does not apply,

however, and appears at first sight to be replaced by the far-downstream behavior

' (3.3a, b)P ~ Po:r-'_ + P1:r-_ +... ,a ~ ao:r-T,

1

_ 1,_ ~ X-_,_ 7 ~ 3_ -1,A ~ Z -_, (3.3c- f)

suggested by (2.2)- (2.4), at least if the Z-scale stays fixed at 0(1), e.g., with Z-periodicity

present. Here P0 is independent of Z, and the splitting in (3.3a) and the rest of the solution

structure bear resemblance to the square-vortex form in (2.9)-(2.11), although now I_01 is

large (,,_ x½), so that relatively high-frequency features apply. Conversely, a low-frequency

input with f/ << 1 would produce the form in (3.3)i downstream, with z replaced by a -_

in effect. Further investigation however suggest s that there are no high-frequency solutions

with 1(01large, e.g., from analysis of (2.3a) with (2.5a-d). Instead, the flow solution seems

more likely to terminate with a finite-distance singularity, as in (3.1), (3.2) or with the wave-

pressure amplitude tending to zero in a square-root fashion, in view of (2.2d), similar to

special case given in Smith and Walton (1988, 1989). Other possibilities for the wide-vortex

and small-vortex nonlinear interactions with TS waves may exist of course, and likewise for

the square-vortex forms in Section 2.

Computational studies have been made of both the wide- and the small-vortex/wave

interactions of (2.2)- (2.4) and (2.13) respectively: Spectral treatments for the Z-variation

have been applied to each case, and a finite-difference Z-representation has also been applied

to the small-vortex case. These studies are being continued. Here we report on some prelim-

inary but signiflcant results obtained in our numerical investigation of the wide-vortex/wave

interaction problem. This was done using a mixed finite-difference/spectral approximation

10
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to the vortex/wave equations (2.2) - (2.4). Thus, for example _ is written as

= cos (3.4)
1

and the x,y dependences of _,, are then approximated using finite differences. All of our

calculations were for the zero pressure gradient case, _1 = 0, but the scheme as described

could be carried out for pressure-gradient-drlven boundary Iayers.

Suppose then that _,_ and _ together with P and A, and a, _, are known at x = 3; we

now describe a scheme which can be used to advance the solution to x = _+_ in such a way

that the wave frequency f_ is held fixed. Thus we are assuming that as the wave evolves its

frequency stays constant whilst its wavelength and amplitude vary.

In order to step the solution forward, we decouple the vortex and wave equations by

making w at x = g + _ satisfy the required boundary condition at y = 0 evaluated in terms

of P known at x = 3. The x and z momentum equations for the combined mean flow-vortex

field can then be stepped forward using essentially the scheme used by Hall (1988) in an

investigation of fully nonlinear GSrtler vortices. The reader is referred to that paper for

precise details of that scheme. It suffices here to say that y derivatives are approximated

using central differences and the nonlinear terms involving any harmonic content of _, _ and

are iterated upon until a converged solution is found.

The above procedure is used to advance the vortex velocity field to x = • + _ and

the corresponding shear stress at that point can then be found from _. The eigenrelation

specified by (2.3a) and (2.4a,b,c) will, for fixed frequency, determine a complex value for the

streamwise wavenumber a. However, it is implicit in our analysis that the wavenumber a is

real, so that the eigenrelation at x = • + _ in general does not have an acceptable solution.

At this stage there are two simple procedures which can be used to remedy the situation.

Firstly, the value of_(y = 0) at z = g+_ can be iterated upon in order to make a calculated

at • + _" purely real. In effect this is most easily done by iterating upon some measure of

the Tollmien-Schlichting wave amplitude at z = _ + 7. Alternatively, we proceed by writing

(2.3a) in the form

Pzz -2 _ _a2p _'_---_-- z+ (3.5)

where - and + denote quantities evaluated at • and _ + _ respectively. The right-hand side

of (3.5) is then known, so that after expanding P in a Fourier series (3.5) can be solved for

P at w + _. The value of a used to determine P is then iterated upon in order to make (say)

(P)i = 0 at Z = 0. In this procedure the Tollmien-Schlichting frequency is of course fixed

and a value for a at • + _ is obtained.

11



The calculationswhich we report on have been carried out using the second of the proce-

dures described above in order to keep a real. The input used to begin our calculations was

found in the following way. Firstly, we assume some form for _ at an initial value m = m"

and then solve the eigenvalue problem determined by (2.3a), (2.4a,b,c) for the appropriate

real values of a and f_. The values of a and F/calculated in this way depend on _ through

the wall shear A, so that for example an almost 2D input Tollmien-Schlichting wave can be

constructed by choosing u---, in (3.4) for n > 1 to be small compared with Y_0. Having solved

for the Tollmien-Schlichting eigenrelation at m = z" the boundary condition to be satisfied by

then can be determined in terms of P. The initial profile for _ at m = z* is then chosen to

be consistent with this condition. In the calculations reported here _ = 0.02, m* = 55, and 8

Fourier modes were retained in the Fourier expansion of the vortex and Tollmien-Schlichting

fields. The initial distribution for _ was taken to be

(3.6a)

where us is the Blasius profile and, u_ = e -_- e -2r and A a parameter which can be varied

so as to alter the size of the incoming vortex. The spanwise velocity @ was then taken to be

_= _X,_w_(-_) sin n/gz (3.6b)

with w_ = cos _e -_ and X, chosen so that _ satisfies the boundary condition on _ at _ = 0

determined in terms of the Tollmien-Schlichting pressure. Clearly the above initial conditions

are rather arbitrary but this is always the case with longitudinal vortex calculations unless the

receptivity problem is discussed; see Hall (1983, 1989). Some limited experimentation with

other initial conditions produced qualitatively similar results but we do not claim to have

made an exhaustive investigation of the effects of the initial conditions on the vortex/wave

interactions ........

In order to monitor the evolution of the vortex and the wave, the following quantities

were calculated as the flow was allowed to develop:

e,, = + _ dy, n = l,2,... (3.7a)

and P, where

P = P0 + _ P,, cos n/3Z. (3.7b)

In Figure 2 we show results from a calculation where the initial wave is almost two-dimensional.

Figures 2a,b show the development of et, e2, e3, e4 and P0, P1,..., P4 respectively. Figure 2c

shows the corresponding development of a. The calculations were started from g = 55 with

|

|

z

:|

2

=

=

=
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more three-dimensionalas it movesdownstreamand that at a finite value x a singularity

appears to arise, beyond which the solution cannot be calculated. The apparent singularity

occurred in the same place when the finite-difference resolution was increased or the spectral

resolution decreased. It was not possible for us to perform the calculations with more than

eight Fourier modes because of our limited computing resources. However, we believe that

Figure 2 represents a significant calculation because it demonstrates the three-dimensional

secondary instability, and ultimate breakdown, of an initially two-dimensional wave and the

induced vorticity structure. The resolution of the calculations was not great enough to deter-

mine whether the singularity encountered numerically is related to the ones discussed earlier

in this section.

In Figure 3 we show the results of a similar calculation but with smaller initial strengths

for the vortex and wave fields. Here the vortex and waves decay as x increases. We note

that the wave appears to effectively disappear before the vortex field. This is consistent

with there being a subcritical bifurcation of a three-dimensional wave from a longitudinal

vortex velocity field at a finite value of x (see our earlier comment concerning a square-root

wave-pressure behavior).

4. NONLINEAR VORTEX/RAYLEIGH INTERACTIONS

Nonlinear interactions between longitudinal vortex flow and inviscid Rayleigh waves are

considered here for the compressible or incompressible boundary layer, with, as a result, the

boundary layer's 0(1) mean-flow profile again being changed completely from its original

form.

The scales involved may be deduced mostly from a first-principles argument. Thus if the

induced Itayleigh wave has pressure amplitude _, its typical velocity amplitudes are also of

order _, by its inviscid nature, and the representative wavelengths are all of the short-scale

size Re-½. Hence the nonlinear inertial effect provoking a mean-flow correction is of order

_2Re½, e.g., from uux, uv_, uw_. This is to be compared with the minimum inertial force in

the typical long-scale vortex motion, namely Re-½, for a full "square" vortex of size as in

(2.6a); this force is from the spanwise and normal momentum of the vortex, e.g., uvo:, uw®

(and the viscous forces such as Re-lw_ y), rather than the strong streamwise momentum force

of order unity. Sothe wave affects-the mean fl0w at zeroth order if _2Re½ is comparable

with lie-½, i.e., if the wave pressure has amplitude _ ,,- Re-½ (smaller than in Section 2), in

principle. There is a complication, however, similar to that in the vortex/TS case, namely

the appearance of logarithmic behavior in the induced vortex velocities close to the (linear)

critical layer(s), situated at y = f say. The logarithmic response arises because the 3D

wave velocities there grow like (y- f)-i (see below), so that the nonlinear inertial spanwise

13



wavevelocities theregrow like (_- f)-i (see below), so that the nonlinear inertial spanwise

forcing is proportional to (_- f)-2, which can be balanced only by the viscous term _ of

the vortex if w is proportional to ln]_ - f[. Hence logarithmic contributions are drawn into

play again, slightly altering the interactive balances.

In consequence the flow solution in the nonlinear vortex/compressible-Rayleigh interac-

tion (see also Figure 1) has the underlying form

[% v, w,p,p, T,#] = [_, Re-½_, l_e-½@,_(x) + Re-l_2,_,Y,g]

(4.1)

+Re-½ [u 0), v 0) , w 0) , p0), p(1), T(1), #(1)]£ 1 + ..

where the first square brackets describe the vortex motion and the second the wave, while

1 1
£1 = (ggnRe)-_ is small. The expansion (4.1) applies across most of the boundary layer,

with y,_ ,-_ 1, and leads to the compressible vortex equations

|

with

(__)_+ (_ v)r + (__ = 0,

p(_ _ + _ _r + w _) = -_'(_) + (g _r)r + (g _)_,

_(_ _ +, _ + w _) = -w_ + (g _)_ + (2g ,_)_+ (g(w_+ _))_,

_(_ _ + _ _ + _ _) -w + (_ _)_ + (_(_ ÷ _))_ + (2_ _)_, =

_(_ Y_+ _ Yr + w _) = _-_{(gY_)_+ (g Y+},

m

_=_=_=0, T = T_ at y=0,

_ u_(x),T _ 1,_ --_ 0 as y---_ oo;

and to the compressible Rayleigh equation for the effective wave pressure/5,

2__r+_, _( _N+M_)-,_'(I-_')_ =o

with

(4._.a)

(4.2b)

(4._c)

(4._)

(4.2e, f)

(4.2g)

(4.2h)

(4.2i)

(4.3a)

/5 --* 0 (or outgoing waves) as y --* _o, _ = 0 at y = 0. (4.3b, c)

Here the wave has p0) = _hexp(iaX - i_t) + c.c., with a, fl(= ac) real, the amplitude

is independent of the faster scales X = Re_x,t = Re_t, and similarly-for uO),vO), etc.,

leading to the inviscid response in (4.3). Also, p' = -u,%_ is the external pressure gradient,

and p_ = Pz/TM_ - (_'- ]_)(_= + _y + @z). The nonlinear interaction occurs through the

definition of M required for (4.3),

= (_ - c)_½ M_, (4.4a)

w

=

!I

1

=

_2
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and through the boundary conditions on the vortex flow at the critical layer

?-2-fi-_ A-] {a2oq_i([_[_ ) + A_ _0_(]___{_) _ 4A_2 fTf._ ._lT__i]a}

at

(4.4b)

= f(x,_) + [where _ = c]. (4.4c)

Here _ is the cross-flow velocity tangential to the critical-layer curve y = f(_,,-_), so that

1

= A_, _ = f_, at _ = f, (4.4d)

and A = 1 + f_. The contribution (4.4a) describes the vortex-forcing of the wave, in essence,

while the cross-flow slip velocity (4.4b) represents the main back-effect of the wave on the

vortex motion, thus producing nonlinear interaction in which both the mean flow and the

wave are unknown.

The main details behind the slip condition (4.4b) are presented in Appendix A.

The nonlinear vortex/Rayleigh interaction is given by (4.2) - (4.4), for the compressible

boundary layer. The pure spatial-development case is shown above, that for pure temporal

development having _ _ replaced by _t, etc., and a fixed surface temperature is assumed

as an example. Some of the comments in Section 2 apply here as well, and further points

about the flow structure are the following. First, the induced slip velocity in (4.4b) clearly

has a connection with that for TS waves in Section 2 corresponding to f = 0 and the high-

frequency regime (see also Section 6). Second, the relatively thin critical layer surrounding

y = f is of the linear viscous kind, because the wave pressure amplitude _ is only 0(Re-½£1)

(see references), and the thickness is of order Re-]. From (4,3a), (4.4a), the wave response

nearby as y ---} f=k is of the form

/_ "-" _o + si5_ + s2_52 + s_i53 +... (4.5a)

where s = y - f, in general logarithmic terms must be absent to allow both ry, c to remain

real, and

_ sM1 + s2M2 +..., (4.5b)

with the coefficients above being z-dependent and related by

A = _0_f_,

2M1_
- f, + - + • - = 0,

11/11

(4.6a)
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+_1(-_ 2+ _fi- f, _)+ [_(_o_ _ - _%) - 2_o_]I_ = o.

(In principle these give three equations fixing the three terms po, p1,p2).

that the 3D wave velocities axe given locally by

,_ ~ F-is -I + Fo + ...,

(4.6c)

Hence it follows

(4.7a)

(4.7b)

(4.7c)

"_ G_ls -1 + Go +...,

(v _ H_lS -1 + Ho +...,

as anticipated at the start of this section; in addition _ ,,_ -T_-i_/(Ta_'M21As2). Here the

inviscid disturbance equations show that

(4.8a - c)

2 --

7M_oPoG-1 = -Pt/ia_t,

7M_-_oH_I= (]-_, - _o_)li_,,

7 M_-_oF- t = - H_ l-d ia,

consistent with (4.6), where _ ,,_ P0 +Pl s +--. ,u- c ,,_ _ls +_2s 2 + .... See also Appendix B

for the incompressible regime. The singular behavior (4.7) is responsible for the generation,

at the amplitude-squared level, of the logarithmic-flow effect which leads to the effective slip

in (4.4b), via the 0(Re-}) critical layer (see Appendix A). Third, the 3D-wave condition

in (4.6) can be shown to agree with the generalized inflexion-point condition for 2D or

3D simple waves on a parallel flow (and with other simpler cases). The latter waves can

act as triggering mechanisms for the present nonlinear interaction. Fourth, the continuity

properties of the total mean flow u,v,w across the critical layer are worth noting. These

are that _,_', _,_, _,_ are all continuous, with discontinuities appearing first in _', v", W

(the prime denotes the normal derivative), and requiring higher-order smoothing within the

critical layer, which is addressed in Appendix A. Fifth, the wave's inertial effects on the

mean flow are felt solely in the slip condition (4.4b) to leading order, the effects in the rest of

the boundary layer being negligible (just[) due to the logarithmic response described earlier.

5. SPECIAL CASES AND LIMIT SOLUTIONS

The vortex/c0mpressible-Rayleigh-wave nonlinear interaction set up in Section 4 poses a

computational task, in general, which seems a particularly severe one in view of the unknown

i
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moving boundary present (in (4.4)) and the coupled partial-differential systems (4.2), (4.8).

No full solutions have been obtained yet, and appropriate computational treatments are

only just being considered. For that reason we turn briefly here to certain special or limiting

properties in (i) - (vii) below, to help provide some possible guidelines and suggestions.

(i) The linearized version, where _ and 0, are identically zero in (4.2) and g,_ take

on the compressible Blasius form, say, applies at small wave-amplitudes [/5[ and leaves the

linear compressible-RayIeigh equation (4.3) controlling instability, with _ known in advance.

Solution properties at various Mach numbers are given by Mack (1975, 1984) and Malik

(1982, 1987) principally. The main result in the present context is that neutral modes exist

at all Mach numbers (see, e.g., Mack's (1984) figures) and so can act as triggers for the

nonlinear interaction of Section 4. See also (iv) below.

(ii) Weak nonlinearity can also be handled analytically in principle, an example being

for two input oblique waves of lowish amplitudes. This is analogous to the Hall and Smith

(1988) oblique-wave/vortex analysis in the TS case, and includes secondary 3D instability

at the start, as does the full system of Section 4.

(iii) Wide-vortex/wave interactions similar to those in Section 2 can arise as limit cases

of (4.2)- (4.4) for enlarged spanwise scales.

(iv) Special ranges of the Mach number Moo are of theoretical and practical interest,

including zero Moo (see also Appendix B), small Moo, the transonic range Moo _ 1, and

the hypersonic range of large Moo. These have connections, in turn, with the vast literature

on linear incompressible Rayleigh modes in boundary layers, with Gajjar's (1989) linear

and nonlinear critical-layer work, with Bowles' (1989) linear and nonlinear instability work,

and with recent studies of linear hypersonic-flow instabilities. Concerning the hypersonic

range in particular, the undisturbed steady 2D boundary layer with no imposed pressure

gradient itself acquires a two-layered form at large Mach numbers (Bush (1966), Lee and

Chang (1969), Stewartson (1964)), with a relatively wide high-temperature layer, wherein g is

0(M_), at the upper edge of which is a relatively thin high-vorticity layer with _- M_F(z)

of order (tnM_)½. Here g = M_F(x) denotes the scaled boundary-layer displacement.

In line with this, the linear instability modes split into two types, the so-called vorticity

mode concentrated within the high vorticity layer and having the maximum growth rate

(Brown and Smith (1989)), and the so-called acoustic modes which spread normally across

the 0(M_) layer and have smaller growth rates (Hall and Cowley (1989), Brown and Smith

(1989)). These linear features agree quite well with Mack's results at large Moo and suggest

the two most likely structures of nonlinear vortex/compressible-Rayleigh interaction at large

Moo, as follows.

17



First, the high-vorticity form of nonlinear interaction occurswhere

_= M_F(:r)+ (2F)-19 [with rexp(r _)= M_]

and the scalings operating are of the form

_1 Moo

'g= 1 - .--M-_,_ = M_F=_ q- 2F_,_ - (2--_'W'

5

= Moo(2r)-_ 8,

(5.1,)

(5.1b)

(5.1c)

(i.id)_~ 1,T~ t,_~ 1.

These scalings are implied by the Prandtl shift in _', in (5.1a), which introduces in effect

a large G6rtler number M_F_ (for the high-vorticity-layer flow) that is negative for flat-

surface flow where F oc -t-x½. Thus the vortex becomes relatively "wide." It is also quasi-2D

(5.2a)

(5.2 0

(5.20

(5.2d)

(5.2e,f)

(5.2g)

in the cross-flow plane, since its governing equations become

(_V)_ + (_W)_ = O,

_F= = -_

-_(vWo + W W_) = -¢_ + (-_wo)_,

_(V _V_+ w T,) = _-'(_ T_)0,

_T= _,_= CT,

_(V _,_+ W _) = (_)_,

from (4.2)with (5.1).The coupled wave-amplitude equation isnow

2M_
f,o_- ---_-v_-a_f,=o,

where

- (_ -_)p½,

(5.3a)

(5.3b)

however, upon suitabie scaling in (4.3), while the back reaction of the wave on the vortex

motion is felt through the slip condition

1

W= 3c_=(_i(_))= O_(l_l=) (5.4)

at the unknown critical-level curve, from (4.4). Hence, despite the quasi-planar balances

in (5.2a-f), the streamwise momentum balance (5.2g) in the vortex still exerts influence on

the nonlinear interaction due to the appearance of _ in (5.3b) and (5.4). We observe that

18
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an alternative type of nonlinear interaction can arise either with sufficient surface curvature

present, if the resulting GSrtler number is equal to M_F_ q- 0(F-l), or with negligible

curvature F_, since then the vortex can remain "square", more like those in Section 4

and below. Again, for small wave amplitudes linearized properties hold, with (5.2), (5.4)

reproducing the basic boundary-layer solution via the Howarth-Dorodnitsyn transformation,

while (5.3) then gives the equation addressed by Brown and Smith for which the neutral

Comments similar to those in (i), (ii) above thereafter apply. Therewavenumber is & = _.

is also a neat, exact, local solution to the full system (5.2) - (5.4), described in Walton

(1990), and a possible link with the experimental studies of Holden (1985), where pronounced

rope-like vortex motions were observed at the edges of hypersonic boundary layers in the

Mach-number range 11-13.

The second of the large-Moo interaction structures is rather simpler, its scales being

implied by the 0(M_) thick boundary-layer form. Thus here

v,  ,v2) ~ Mi, (5.5a)

_= 0(1), (_, a),,_ M£2,_ ,,_ M_, (5.5b)

leaving the complete nonlinear interaction system (4.2) - (4.4) intact. The only new feature

here is that the boundary-layer's normal extent becomes finite, 0 < y < F say, in normalized

terms. The linearized version then matches up with the linear acoustic-modes analyses of

Hall and Cowley and Brown and Smith, after which comments as in (i), (ii) again apply. It

may be significant however that there are infinitely many acoustic modes, and hence possible

bifurcations, available usually as the flow proceeds downstream, in contrast with the single

vorticity mode; and the modes present with large wavenumbers, as well as mode-crossing,

may shed extra light on the nonlinear interaction process.

(v) Extreme surface conditions, values of the parameters present such as a, C, or pressure

gradients, could also provide extra insight.

(vi) Besides the many applications within boundary-layer transition summarized above,

and the corresponding computational tasks, and nonlinear similarity forms for instance, there

are also many other flow configurations to which vortex/Rayleigh-wave interaction applies

in principle (see Section 6 and Appendix B).

(vii) Finally here, we should mention the possibility that the Smith and Walton (1988,

1989) breakdown summarized in (3.2) also describes the ultimate behavior of the present

vortex/compressible-Rayleigh nonlinear systems, at least for wide vortices. If so, the bound-

ary layer again separates, effectively, splitting into two increasingly far-apart layers, with

only slow motion in-between, at a finite distance downstream. That opens up an intriguing

prospect, namely that a vortex/wave interaction (either as in Section 2 or as in Section 4)
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can induceseparation(as above),which then introducesanextra (inflexional) inviscid mode
and thence an extra vortex/wave nonlinear interaction, which leadsto another separation,

henceanother interaction, and so on. This self-generatingprocesscausesthe whole flow

structure locally to cascadeinto smaller length scales,and thenceinto substructures.

6. FURTHER COMMENTS

The present work extends our previous studies of vortex/wave interaction (Hall and
Smith (1987-1989))to the strongly nonlinear regimein which the entire mean-flowprofile,
at any station z, is altered substantially from its undisturbed laminar form. This is for the

compressible boundary-layer setting in the nonlinear vortex/Rayleigh interaction of Section

4 (the incompressible version is noted in Appendix B) and for the incompressible case in the

nonlinear vortex/TS interaction of Section 2, with the corresponding compressible vortex/TS

interaction following readily from a combination of those two sections (see also Smith and

Walton (1988, 1989)) and below. The solution properties and suggestions given in Section 3,

Section 5 hint fairly strongly, we believe, at the potential power of these nonlinear interactions

in terms of full transition of the flow. In addition, it appears that numerous waves can

be triggered off (see Section 5), all interacting nonlinearly with the unknown mean flow,

especially if separation for instance is approached. These and other features of the nonlinear

interactions found offer exciting prospects for more complete theoretical understanding of

fully fledged boundary-layer transition.

Some numerical work for fully nonlinear interaction is described in Section 3, for the

vortex/TS case, but further concerted efforts on full computations, for both the vortex/TS

and the vortex/Rayleigh cases, are undoubtedly necessary and these represent a major chal-

lenge. They should enable quantitative comparisons with experiments and direct numerical

simulations to be made eventually (an encouraging point being that qualitatively the flow

structures in Section 2, Section 4 seem to be in line with the numerical-simulation experi-

ence, e.g., of Kleiser, that many more spanwise than streamwise wavenumbers are required to

accurately describe fully fledged transition, except in its later stages). The pure spatial prob-

lem, the pure temporal problem, and the combined problem featuring the operator _qt+ _cOx

are all of interest here since they are likely to provoke different ultimate behaviors and hence

possibly different views of such phenomena as lambda-vortex formations (see above) and the

successive collapses in scales referred to in Section 5. The latter in turn may lead on to the

3D Euler stage locally, cf. Smith (1988) for nonlinear TS transition, allowing comparisons

with experiments and direct numerical simulations (e.g., Zang, Erlebacher, Hussaini, Kleiser,

and Biringen) on the later stages of transition, including spikes, intermittency and streak

production. In all this, however, the computational tasks set by the nonlinear interaction
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problemsposedin Section2 and in (4.2)- (4.4) for instanceseemto presenta main hurdle.

Certain interesting other aspectsof the vortex/wave interactions should also be put on

record here. These are: various limiting or simplified cases, such as those in Section 5;

similarity solutions (c.f., Section 3, Walton (1990)); the analogy with GSrtler-vortex devel-

opment (based on Hall (1982, 1983) and subsequent works); non-equilibrium critical-layer

effects (in the context of Section 4); high-frequency properties (for Section 2, Section 4); and

the implications for by-pass transition where the nonlinear interactions do not start from

linear small-disturbance growth.

The nonlinear vortex/wave interactions also have numerous potential applications for

other types of flows, in all of which the essential ideas of Section 2 and/or Section 4 would

seem to apply: in wakes, channel flows (Bennett et al. (1988)), pipe flows (Walton, 1990),

plane Couette flow, water motions, free shear layers, separations, vortex breakdown, where a

swirl-velocity component is added to the vortex motion (and separation such as in (3.2) could

correspond to abrupt vortex thickening), and flows over surface roughnesses, for example. See

also Appendix B. The ideas apply further to length scales other than those taken in Section

2, Section 4. Again, there may be extensions of interest along the following lines: upper-

branch flow structures, connected with the high-frequency limit; non-Chapman fluids and

real-gas effects; surface-cooling effects; external-shock interactions in hypersonic flow, where

the acoustic modes (Section 5) could play an important part; external pressure-gradient in-

fluences; and alternate compressible interactions. Nevertheless, the major challenge pressing

seems to us to be the computational one of accurately solving the vortex/wave nonlinear

interaction equations set up in Section 2, Section 4, given the encouraging guidelines on the

strongly nonlinear effects possible.
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APPENDIX A. THE CRITICAL-LAYER BEHAVIOR

The critical layer occurs when y = f(x, _)+Re-_Y, with Y of 0(1), and the flow properties

produced are predominantly linear. The solution takes the form

u=c+ae-[Al(x,-_)Y+...+ae-[£1U(1)+...+Re-½(£_U+£tU(2))+..., (A1)

(A2)

w = ... + Re-i£_W(') + ... + Re-½(£_W + £aW (2)) + ..., (A3)

p = ... + Re-½£_P 0) + Re-]£_P (2) + ..., (A4)

where _1 is the streamwise vortex shear at the critical layer, the main wave part (superscript

(1)) depends on the fast scales (Z,t) = Re½(x,t) with wavespeed c as in Section 4, and

the main vortex part (overbarred) is independent of the fast scales. Here we discuss the

incompressible case with zero pressure gradient, for the sake of clarity; the compressible

version follows along similar lines.

The successive balances in mass conservation resulting from (A1)-(A4) give

Vy(0= ITW(y a), (A5)

+ + f w 2)= o, (A6)

-fxA_ + Vy + Wr = O, (A7)

and the x-momentum balances of concern are

V O) = f-_W 0), (A8)

_ = AfrO) (A9))qVU(_ ) ÷ )_IV (2) ÷ W(1))q_V W(2)f_l -p(x x) +_vrr ,

< U(OU(_ ) + V(2)U O) + WO)U(_ ')- WO)f-_U(y 0 > +V)U +'WY._r_ =... + A_'rr. (A10)

Likewise, the z-momentum balances here become

AI)IZ(1) (A11)= +

< UO)W 0) + V(2)W 0) + WO)W_ O- W(2)f-iW(y 0 >= ... + AWrr, (A12)

while the y-momentum equation implies that pO) is independent of Y, and hence equal to

pO), and

= AT/(O (A13)P(_) -)uYV(xl) + L..._ryy.

In (A10), (A12), <> refers to the vortex components only, in the enclosed terms.
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The wave part in this non-flat critical layer may be analyzed by putting V (2) - f-iW (2) =

V,., say, which leaves U(O, V_, W O) satisfying essentially the equations of a linear 3D distur-

bance in astandard fiat critical layer, from (A6), (A9), (All), (A13) and since V (1) = f-_WO)

from (A5), (A8). In particular, W (1) satisfies a forced Airy equation in the form

AT]'/( 1 )'XIYW(x 0 = -PO)A-I + "--*"Yr', (A14)

which yields the solution

2 2 ^= a i )-,hJ(Y)E +
1

y= _,', (A15)

where J satisfies J" - _rj = 1, 0"(4-0o) = O, and can be expressed in terms of the Airy

function, and E = exp(iaX -i_2t). This and the corresponding solutions for V_, U0) are

smooth for all Y and satisfy the asymptotic conditions of matching,

[U (1)) V (1)) W (1)] _ Y-I[F__,G_I,H_I]E+c.c.,[V (_), W (2)] _ [Co, Ho]E4-c.c., as Y -* ±¢x_,

(A16)

implied by (4.7), (4.8) (with Appendix B), as required.

Then the main vortex equation of interest here is that for W, in (A12). Here the behaviour

in (A16) shows that the nonlinear forcing term on the left-hand side of (A12) decays as y-2

as Y _ =hcf. So double integration of (A12) with respect to Y produces the response

W ,_ -BtnlYI as Y --, 4-_ (A17)

with B = 2(H__H*___)-_4-(f-_Ho-Go)H*___ +(f-_H_-G_)H__ being found to equal -_A-½ as

defined in (4.4b) or in Appendix B. The logarithmic behavior in (A17) and the associated

logarithmic terms in U,V at large IYI are responsible for the scale factor 1:1 in (4.1), as well

as for the effective slip condition in (4.4b). The condition (4.4b) follows from the match with

the flow solution in Section 4, since tn]Y] _ _lnRe 4- lnIy- f] in effect.
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APPENDIX B. VORTEX/RAYLEIGH-WAVE INTERACTIONS IN THE IN-

COMPRESSIBLE CASE

Many of the extra applications mentioned in the text are concerned more with incom-

pressible fluids, for which the vortex/wave interaction equations of (4.2) - (4.4) continue to

hold provided _, _ are replaced by unity in (4.2a-d), M is replaced by (_ - c) in (4.3a), with

the _2 term omitted, and (4.4b) is replaced by

A-]
__ (_,)_{}, (Bi)

where the curly brackets signify the curly-bracketed expression in (4.4b). The governing

equationsinthatcaseare(4.2a-d,h,i),(4.3a-c),(4.4b-d),withtheabovemodi_cations.In

addition, the local pressure expansion (4.5a) remains valid provided that in (4.6a-c) _,, M2

are replaced by ul,u2 respectively. Similarly, the local velocity expansions (4.7a-c) remain

true provided that

(B2, 3, 4)

instead of (4.8a-c) in turn; also

Go = -_2 G_l I_x - 2f,2l ia_ , (BS)

1to = -_2H_1/_1 + (2f_, - r_,,)/i_, (B6)

in this case.
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Figure 1 (a) Typical strongly nonlinear vortex/wave interactions in a boundary layer.

The scales of the slowly varying vortices are shown; the travelling waves present

are either TS waves (Sections 2, 3) or Rayleigh waves (Sections 4, 5).
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Figure 1 (b) Cross-sectionO(Re-½ x Re-½) in the vortex/R.ayleigh-wave case of Sections

4, 5, including the critical-layer O(Re-|) thick) effect at y = f.
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Figure 2(a) The development of el, e2, e3, e4 with r_ for the case A = .02, Po + _,,j'tv p,, = 1

at ;c = 55.
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Figure 2(b) The development of P0, P1, P2, P3, P4 with z for the case A = .02,

Po + E_ ''1'v P,.,= 1 at z = 55.
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